Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 85a

Answer

$6.72\times 10^{-34}\;J.s$

Work Step by Step

The following is the stopping potential data for lithium where we have converted the wavelength into frequency Wavelength (nm):$\;\;\;\;\;\;433.9\;\;\;404.7\;\;\;365.0\;\;\;312.5\;\;\;253.5$ Frequency ($10^{14}$ Hz):$\;\;6.914\;\;\;7.413\;\;\;8.219\;\;\;9.600\;\;\; 11.834$ Stopping potential (V):$\;0.55\;\;\;\;0.73\;\;\;\;1.09 \;\;\;\;\;1.67\;\;\;\;\;2.57$ The plot of the measured stopping potential $(V_{stop})$ versus the frequency $(f)$ of the light is a straight line. Further, the slope of that straight line should be $\frac{h}{e}$. Therefore, from the following plot, we can write $\frac{h}{e}=\frac{ab}{bc}$ or, $h=e\Big(\frac{ab}{bc}\Big)$ or, $h=1.6\times 10^{-19}\times\Big(\frac{1.67-1.09}{9.6\times 10^{14}-8.219\times 10^{14}}\Big)\;J.s$ or $h=6.72\times 10^{-34}\;J.s$ Therefore, the value of Planck constant is $6.72\times 10^{-34}\;J.s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.