Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 77b

Answer

$-10\%$

Work Step by Step

The probability that an electron of mass $m$ and energy $E$ will tunnel through a barrier of height $U$ and thickness $L$ is given by the transmission coefficient $T$ $T\approx e^{-2bL}$, ..............................$(1)$ where $b=\sqrt {\frac{8\pi^2m(U-E)}{h^2}}$ ..............................$(2)$ Given, $E=5.1$ $eV$, $U=U_{b}=6.8$ $eV$ Substituting the above values in equation $2$, we get $b=\sqrt {\frac{8\times\pi^2\times 9.1\times 10^{-31}\times(6.8-5.1)\times1.6\times 10^{-19}}{(6.63\times 10^{-34})^2}}$ or, $b\approx 6.668\times 10^{9}$ $m^{-1}$ As the change in potential height is very small, we can write $\Delta T=\frac{dT}{dL}\Delta L$ ..............................$(3)$ Now, differentiating both side of eq, $(1)$ with respect to $L$, we get $\frac{dT}{dL}=-2be^{-2bL}$ or, $\frac{dT}{dL}=-2bT$ ..............................$(4)$ And now eq. $(3)$ becomes, $\Delta T=-2bT\Delta L$ $\frac{\Delta T}{T}=-2b\Delta L$ Given, $L=750$ $pm$ $=750\times 10^{-12}$ $m$ $\Delta L=1\%$ of $L$ $=0.01\times 750\times 10^{-12}$ $m$ $=750\times 10^{-14}$ $m$ Thus, $\frac{\Delta T}{T}=-2\times 6.668\times 10^{9}\times 750\times 10^{-14}$ or, $\frac{\Delta T}{T}=-0.10$ or, $\frac{\Delta T}{T}=-10\%$ Therefore, the percentage of change in the transmission coefficient is $-10\%$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.