Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.5 Properties of Logarithms - 4.5 Assess Your Understanding - Page 331: 63

Answer

$-2 \ln(x-1)$

Work Step by Step

Recall: $\log_a (MN) = \log_a M+\log_a N$ Use the rule above to obtain: \begin{align*}\require{cancel} \ln \left(\dfrac{x}{x-1} \right) + \ln \left(\dfrac{x+1}{x} \right) -\ln{(x^2-1)}\\\\ &= \ln \left(\dfrac{(x)(x+1)}{(x-1)(x)} \right)-\ln{(x^2-1)}\\\\ &= \ln \left(\dfrac{\cancel{(x)}(x+1)}{(x-1)\cancel{(x)}} \right)-\ln{(x^2-1)}\\\\ &=\ln{\left(\dfrac{x+1}{x-1}\right)}-\ln{(x^2-1)} \end{align*} Recall further that: $\log_a\left(\dfrac{M}{N}\right) = \log_a M-\log_a N$ Use this rule to obtain: $\ln \left(\dfrac{x+1}{x-1} \right)- \ln(x^2-1) = \ln \left(\dfrac{x+1}{(x-1)(x^2-1)} \right)$ Since $x^2-1=(x+1)(x-1)$, then \begin{align*} \require{cance} \ln \left(\dfrac{x+1}{(x-1)(x^2-1)} \right) \\\\ &= \ln \left(\dfrac{x+1}{(x-1)(x-1)(x+1)} \right) \\\\ &= \ln \left(\dfrac{\cancel{x+1}}{(x-1)(x-1)\cancel{(x+1)}} \right) \\\\ &= \ln \left(\dfrac{1}{(x-1)^2} \right) \end{align*} With $\dfrac{1}{(x-1)^2} = (x-1)^2$, then: $\ln \left(\dfrac{1}{(x-1)^2} \right) = \ln{(x-1)^{-2}}$ Recall that: $\log_a M^r = r \log_a M$ Using the rule above gives: $\ln((x-1)^{-2} = -2 \ln(x-1)$ Therefore, $\ln \left(\dfrac{x}{x-1} \right) + \ln \left(\dfrac{x+1}{x} \right) - \ln(x^2-1) = \boxed{-2 \ln(x-1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.