Answer
$2 + \log_5 x$
Work Step by Step
Recall:
$\log_a (MN) = \log_a M+\log_a N$
Using the rule above gives:
$\log_5 (25x) = \log_5 25 + \log_5 x$
Since $25=5^2$, then the equation above is equivalent to:
$\log_5{(25x)}=\log_5 {(5^2)} +\log_5{x}$
With $\log_a a^r =r$, then the equation above simplifies to
$\log_5 {(25x)} = 2+\log_5{x}$
Thus,
$\log_5 (25x) = \boxed{2 + \log_5 x}$