Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.5 Properties of Logarithms - 4.5 Assess Your Understanding - Page 331: 36

Answer

$\dfrac{1}{4} (a-b)$

Work Step by Step

$\ln \left(\sqrt[4]{\dfrac{2}{3}} \right) = \ln \left(\dfrac{2}{3} \right)^{\dfrac{1}{4}}$ With $\log_a M^r = r \log_a M$, then $\ln \left(\dfrac{2}{3} \right)^{\dfrac{1}{4}} = \dfrac{1}{4} \ln \left(\dfrac{2}{3} \right)$ Recall that $\log_a\left(\dfrac{M}{N}\right) = \log_a M-\log_a N$. Using the rule above gives: $\ln \left(\dfrac{2}{3} \right) = \ln2-\ln3$ With $\because \ln3 = b \hspace{20pt} \text{and} \hspace{20pt} \ln2=a$, then $\ln2-\ln3 = a-b$ Thus, $\ln \left(\dfrac{2}{3} \right) = a-b$ Therefore, $\ln \left(\sqrt[4]{\dfrac{2}{3}} \right) = \dfrac{1}{4}\ln{\left(\dfrac{2}{3}\right)} = \boxed{\dfrac{1}{4} (a-b)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.