Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.5 Properties of Logarithms - 4.5 Assess Your Understanding - Page 331: 23

Answer

$3$

Work Step by Step

$\because \log_a M = \dfrac{\log_b M}{\log_b a}$ $\therefore \log_2 6 = \dfrac{\log_{10} 6}{\log_{10} 2} \hspace{20pt} \text{and} \hspace{20pt} \log_6 8 = \dfrac{\log_{10} 8}{\log_{10} 6}$ Thus, the given expression is equivalent to: $\require{cancel} \log_2 6 \cdot \log_6 8 = \dfrac{\cancel{\log_{10} 6}}{\log_{10} 2} \times \dfrac{\log_{10} 8}{\cancel{\log_{10} 6}} = \dfrac{\log_{10} 8 }{\log_{10} 2}$ Note that: $\log_{10} 8 = \log_{10} 2^3$ $\because \log_a M^r = r \log_a M$ $\therefore \log_{10} 2^3 = 3 \log_{10} 2$ Therefore, $\require{cancel}\dfrac{\log_{10}{8}}{\log_{10}{2}} = \dfrac{3 \cancel{\log_{10} 2}}{\cancel{\log_{10} 2}} = 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.