Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.5 Properties of Logarithms - 4.5 Assess Your Understanding - Page 331: 48

Answer

$\ln x+\frac{1}{2} \ln \left(1+x^{2}\right)$

Work Step by Step

Given: $\quad \ln (x \sqrt{1+x^{2}})$ Use the rule $\quad \ln_a{AB}=\ln_aA+\ln_aB\quad$ to obtain: \begin{align*} \ln (x \sqrt{1+x^{2}})&=\ln x+\ln \sqrt{1+x^{2}}\\ \ln (x \sqrt{1+x^{2}})&=\ln x+\ln \left(1+x^{2}\right)^{1/_{2}} \end{align*} Using the rule $\ln_ax^{m} = m \ln_a{x}$ gives: $$\ln (x \sqrt{1+x^{2}})=\ln x+\frac{1}{2} \ln \left(1+x^{2}\right)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.