Answer
$\log_3 x -2$
Work Step by Step
Recall:
$\log_a(\dfrac{M}{N}) = \log_a M-\log_a N$
Using the rule above gives:
$\log_3 \left(\dfrac{x}{9} \right) = \log_3 x - \log_3 9$
With $9=3^2$, then the equation above is equivalent to
$\log_3{\left(\dfrac{x}{9}\right)} = \log_3{x}-\log_3{(3^2)}$
Since $\log_a a^r =r$, then the equation above simplifies to:
$\log_3{\left(\dfrac{x}{9}\right)} = \log_3{x}-2$