Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 7 - Analytic Trigonometry - 7.4 Trigonometric Identities - 7.4 Assess Your Understanding - Page 476: 25

Answer

Work on the left side of the identity using $\tan{\theta}=\frac{\sin\theta}{\cos\theta}$ and $\cot\theta=\frac{\cos\theta}{\sin\theta}$. Refer to the step-by-step part below for the complete proof..

Work Step by Step

We have to show that: $\cos\theta(\tan\theta+\cot\theta)=\csc\theta$ Note that $\tan\theta=\frac{\sin\theta}{\cos\theta}$ $\cot\theta=\frac{\cos\theta}{\sin\theta}$ Work on the left side: $\cos\theta\left(\dfrac{\sin\theta}{\cos\theta}+\dfrac{\cos\theta}{\sin\theta}\right)\\ =\sin\theta+\dfrac{\cos^2\theta}{\sin\theta}\\ =\dfrac{\sin^2\theta}{\sin\theta}+\dfrac{\cos^2\theta}{\sin\theta}\\ =\dfrac{\sin^2\theta+\cos^2\theta}{\sin\theta}\\ =\dfrac{1}{\sin\theta}\\ =\csc\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.