Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 7 - Analytic Trigonometry - 7.4 Trigonometric Identities - 7.4 Assess Your Understanding - Page 476: 13

Answer

$\dfrac{1+\sin{\theta}}{\cos{\theta}}$.

Work Step by Step

Multiply to obtain: \begin{align*} \frac{\cos{\theta}}{1-\sin{\theta}}\cdot\frac{1+\sin{\theta}}{1+\sin{\theta}}&=\frac{\cos{\theta}(1+\sin{\theta})}{(1-\sin{\theta})(1+\sin{\theta})}\\\\&=\frac{\cos{\theta}(1+\sin{\theta})}{1-\sin^2{\theta}} \end{align*} We know that $\cos^2{\theta}+\sin^2{\theta}=1\longrightarrow \cos^2{\theta}=1-\sin^2{\theta}$. Thus, \begin{align*} \dfrac{\cos{\theta}(1+\sin{\theta})}{1-\sin^2{\theta}}&=\frac{\cos{\theta}(1+\sin{\theta})}{\cos^2{\theta}}\\\\ &=\frac{1+\sin{\theta}}{\cos{\theta}} \end{align*}.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.