Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 7 - Analytic Trigonometry - 7.4 Trigonometric Identities - 7.4 Assess Your Understanding - Page 476: 14

Answer

$\dfrac{1-\cos{\theta}}{\sin{\theta}}$

Work Step by Step

Mutiply to obtain: \begin{align*} \frac{\sin{\theta}}{1+\cos{\theta}}\cdot\frac{1-\cos{\theta}}{1-\cos{\theta}}&=\frac{\sin{\theta}(1-\cos{\theta})}{(1+\cos{\theta})(1-\cos{\theta})}\\\\&=\frac{\sin{\theta}(1-\cos{\theta})}{1-\cos^2{\theta}}\end{align*} We know that $\cos^2{\theta}+\sin^2{\theta}=1\longrightarrow \sin^2{\theta}=1-\cos^2{\theta}$. Thus \begin{align*} \frac{\sin{\theta}(1-\cos{\theta})}{1-\cos^2{\theta}}&=\frac{\sin{\theta}(1-\cos{\theta})}{\sin^2{\theta}}\\\\&=\frac{1-\cos{\theta}}{\sin{\theta}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.