Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 75

Answer

Quotient: $\quad x^2+ax+a^2$ Remainder: $\quad0$

Work Step by Step

The given expression is:- $(x^3-a^3)\div (x-a)$ Rewrite as descending powers of $x$. $(x^3+0x^2+0x+a^3)\div (x-a)$ $\begin{matrix} & x^2 & +ax &+a^2 ​& & \leftarrow &Quotient\\ &-- &-- &--&--& \\ x-a) &x^3&+0x^2&+0x&-a^3 & \\ ​ &x^3 &-ax^2 & && \leftarrow &x^2(x-a) \\ & -- & -- & --& & \leftarrow &subtract \\ & 0 & ax^2 &+0x & \\ & & ax^2& -a^2x & & \leftarrow & ax(x-a) \\ & & -- & -- & -- & \leftarrow & subtract \\ & & 0& a^2x&-a^3 & \\ & & & a^2x& -a^3 & \leftarrow & a^2(x-a) \\ & & & -- & -- & \leftarrow & subtract \\ & & & 0&0 & \leftarrow & Remainder ​\end{matrix}$ Checking: (Quotient)(divisor)+ Remainder $=(x^2+ax+a^2)(x-a)+0$ $=x^3+ax^2+a^2x-x^2a-a^2x-a^3$ $=x^3-a^3$ $=$ Dividend Hence, the Quotient is $x^2+ax+a^2$. and the remainder is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.