Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 65

Answer

Quotient $=5x^2-13$ Remainder $=x+27$

Work Step by Step

The given expression is $(5x^4-3x^2+x+1)\div(x^2+2)$ Rewrite the expression as $(5x^4+0x^3-3x^2+x+1)\div(x^2+0x+2)$ Perform long division to obtain: $\begin{matrix} & 5x^2 & -13 & ​& & & \leftarrow &\text{Quotient}\\ &-- &-- &--&--& \\ x^2+0x+2) &5x^4&+0x^3&-3x^2&+x&+1 & \\ ​& 5x^4 &+0x^3 &+10x^2 & && \leftarrow &5x^2(x^2+0x+2) \\ & -- & -- & --& && \leftarrow &\text{subtract} \\ & 0 & 0& -13x^2 &+x &+1 \\ & & & -13x^2 &0x &-26& \leftarrow & -13(x^2+0x+2) \\ & & & -- & -- & -- & \leftarrow & \text{subtract} \\ & & & 0&x &+27& \leftarrow & \text{Remainder} ​\end{matrix}$ Checking: (Quotient)(divisor)+ Remainder $=(5x^2-13)(x^2+2)+x+27$ $=5x^4-13x^2+10x^2-26+x+27$ $=5x^4-3x^2+x+1$ $=$ Dividend Hence, the Quotient is $5x^2-13$ and the remainder is $x+27$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.