Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 111

Answer

$-(3x+1)(3x-1)(x^2+1)$

Work Step by Step

Let $x^2=a$. $1-8x^2-9x^4=1-8a-9a^2$ Rewrite $-8a$ as $-9a+1a$ $=1-9a+1a-9a^2$ Group the first two terms together and group the last two terms together. $=(1-9a)+(1a-9a^2)$ Factor out the GCF in each group. $=1(1-9a)+a(1-9a)$ Factor out $(1-9a)$. $=(1-9a)(1+a)$ Back substitute $a=x^2$. $=(1-9x^2)(1+x^2)$ $=[1^2-(3x)^2](1+x^2)$ Use special formula $a^2-b^2=(a+b)(a-b)$where $a=1$ and $b=3x$. $=(1+3x)(1-3x)(1+x^2)$ $=(1+3x)[-(-1+3x)](1+x^2) $=(3x+1)[-(3x-1)](x^2+1) $=-(3x+1)(3x-1)(x^2+1)$ Hence, the completely factored form of the given expression is $-(3x+1)(3x-1)(x^2+1)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.