Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 62

Answer

Quotient $=3x^2-7x+15$ Remainder $=-32$

Work Step by Step

The given expression is $(3x^3-x^2+x-2)\div(x+2)$ Perform long division to obtain: $\begin{matrix} & 3x^2 & -7x &+15 ​& & \leftarrow &\text{ Quotient}\\ &-- &-- &--&--& \\ x+2) &3x^3&-x^2&+x&-2 & \\ ​& 3x^3 & +6x^2 & & & \leftarrow &3x^2(x+2) \\ & -- & -- & & & \leftarrow &\text{ subtract} \\ & 0 & -7x^2 & +x & & \\ & & -7x^2 & -14x & & \leftarrow & -7x(x+2) \\ & & -- & -- & & \leftarrow & \text{ subtract} \\ & & 0&15x &-2 & \\ ​& & & 15x& +30 & \leftarrow & 15(x+2) \\ & & & -- & -- & \leftarrow & \text{ subtract} \\ & & & 0 & -32 & \leftarrow & \text{ Remainder} ​\end{matrix}$ Checking: (Quotient)(divisor)+ Remainder $=(3x^2-7x+15)(x+2)-32$ $=3x^3-7x^2+15x+6x^2-14x+30-32$ $=3x^3-x^2+x-2$ $=$ Dividend Hence, the Quotient is $3x^2-7x+15$. and the remainder is $-32$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.