Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 67

Answer

Quotient $=2x^2$ Remainder $=-x^2+x+1$

Work Step by Step

The given expression is $(4x^5-3x^2+x+1)\div(2x^3-1)$ Rewrite the expression as $(4x^5+0x^4+0x^3-3x^2+x+1)\div(2x^3+0x^2+0x-1)$ Perform ong division: $\begin{matrix} & 2x^2 & & ​& && & \leftarrow &\text{Quotient}\\ &-- &-- &--&--& \\ 2x^3+0x^2+0x-1) &4x^5&+0x^4&+0x^3&-3x^2&+x&+1 & \\ ​& 4x^5 &+0x^4 &+0x^3 & -2x^2& && \leftarrow &2x^2(2x^3+0x^2+0x-1) \\ & -- & -- & --& --&&& \leftarrow &\text{subtract} \\ & 0 & 0& 0 &-x^2 &+x&+1 & \leftarrow & \text{Remainder} ​\end{matrix}$ Checking: $\text{(Quotient)(divisor)+ Remainder}$ $=(2x^2)(2x^3-1)-x^2+x+1$ $=4x^5-2x^2-x^2+x+1$ $=4x^5-3x^2+x+1$ $=\text{Dividend}$ Hence, the quotient is $2x^2$ and the remainder is $-x^2+x+1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.