Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 72

Answer

Quotient $=-3x^3-3x^2-3x-5$ Remainder $=-6$

Work Step by Step

The given expression is $(-3x^4-2x-1)\div(x-1)$ Rewrite the expression as $(-3x^4+0x^3+0x^2-2x-1)\div(x-1)$ Perform long division: $\begin{matrix} & -3x^3 & -3x^2 & -3 x​&-5 &&& \leftarrow &\text{Quotient}\\ &-- &-- &--&--& \\ x-1) &-3x^4&+0x^3&+0x^2&-2x&-1 & \\ ​ &-3x^4 & +3x^3& &&&& \leftarrow &-3x^3(x-1) \\ & -- & --& &&&&\leftarrow &\text{subtract} \\ & 0 & -3x^3& 0x^2 & & & \\ ​& &-3x^3 & +3x^2& &&& \leftarrow &-3x^2(x-1) \\ & & -- & --& &&&\leftarrow &\text{subtract} \\ & & 0 & -3x^2& -2x & & & \\ ​& &&-3x^2 & +3x&& & \leftarrow &-3x(x-1) \\ & && -- & --& &&\leftarrow &\text{subtract} \\ & && 0 & -5x & -1 & & \\ ​& &&&-5x & +5& & \leftarrow &-5(x-1) \\ & &&& -- & --& &\leftarrow &\text{subtract} \\ & && & 0 & -6 & & \leftarrow & \text{Remainder} ​\end{matrix}$ Checking: $\text{(Quotient)(divisor)+ Remainder}$ $=(-3x^3-3x^2-3x-5)(x-1)-6$ $=-3x^4-3x^3-3x^2-5x+3x^3+3x^2+3x+5-6$ $=-3x^4-2x-1$ $=\text{ Dividend}$ Hence, the quotient is $-3x^3-3x^2-3x-5$ and the remainder is $-6$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.