Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 61

Answer

The quotient is $4x^2-11x+23$. The remainder is $-45$.

Work Step by Step

The given expression is $(4x^3-3x^2+x+1)\div(x+2)$ Perform synthetic division to obtain: $\begin{matrix} & 4x^2 & -11x &+23 ​& & \leftarrow &\text{Quotient}\\ &-- &-- &--&--& \\ x+2) &4x^3&-3x^2&+x&+1 & \\ ​& 4x^3 & +8x^2 & & & \leftarrow &4x^2(x+2) \\ & -- & -- & & & \leftarrow &\text{subtract} \\ & 0 & -11x^2 & +x & & \\ & & -11x^2 & -22x & & \leftarrow & -11x(x+2) \\ & & -- & -- & & \leftarrow & \text{subtract} \\ & & 0&23x &+1 & \\ ​& & & 23x& +46 & \leftarrow & 23(x+2) \\ & & & -- & -- & \leftarrow & \text{subtract} \\ & & & 0 & -45 & \leftarrow & \text{Remainder} ​\end{matrix}$ Checking: (Quotient)(divisor)+ Remainder $=(4x^2-11x+23)(x+2)-45$ $=4x^3-11x^2+23x+8x^2-22x+46-45$ $=4x^3-3x^2+x+1$ $=$ Dividend Hence, the Quotient is $4x^2-11x+23$. and the remainder is $-45$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.