Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 68

Answer

Quotient $=x^2$ Remainder $=x-2$

Work Step by Step

The given expression is $(3x^5-x^2+x-2)\div(3x^3-1)$ Rewrite the expression as $(3x^5+0x^4+0x^3-x^2+x-2)\div(3x^3+0x^2+0x-1)$ Perform long division: $\begin{matrix} & x^2 & & ​& && & \leftarrow &\text{Quotient}\\ &-- &-- &--&--& \\ 3x^3+0x^2+0x-1) &3x^5&+0x^4&+0x^3&-x^2&+x&-2 & \\ ​& 3x^5 &+0x^4 &+0x^3 & -x^2& && \leftarrow &x^2(3x^3+0x^2+0x-1) \\ & -- & -- & --& --&&& \leftarrow &\text{subtract} \\ & 0 & 0& 0 &0 &+x&-2 & \leftarrow & \text{Remainder} ​\end{matrix}$ Checking: $\text{(Quotient)(divisor)+ Remainder}$ $=(x^2)(3x^3-1)+x-2$ $=3x^5-x^2+x-2$ $=\text{ Dividend}$ Hence, the quotient is $x^2$ and the remainder is $x-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.