Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 71

Answer

Quotient $=-4x^2-3x-3$ Remainder $=-7$

Work Step by Step

The given expression is $(-4x^3+x^2-4)\div(x-1)$ Rewrite the expression as $(-4x^3+x^2+0x-4)\div(x-1)$ Perform long division: $\begin{matrix} & -4x^2 & -3x & -3 ​& && \leftarrow &\text{Quotient}\\ &-- &-- &--&--& \\ x-1) &-4x^3&+x^2&+0x&-4 & \\ ​ &-4x^3 & +4x^2& &&& \leftarrow &-4x^2(x-1) \\ & -- & --& &&&\leftarrow &\text{subtract} \\ & 0 & -3x^2& 0x & & & \\ ​& &-3x^2 & +3x& && \leftarrow &-3x(x-1) \\ & & -- & --& &&\leftarrow &\text{subtract} \\ & & 0 & -3x& -4 & & & \\ ​& &&-3x & +3& & \leftarrow &-3(x-1) \\ & && -- & --& &\leftarrow &\text{subtract} \\ & && 0 & -7 & & \leftarrow & \text{Remainder} ​\end{matrix}$ Checking: $\text{(Quotient)(divisor)+ Remainder}$ $=(-4x^2-3x-3)(x-1)-7$ $=-4x^3-3x^2-3x+4x^2+3x+3-7$ $=-4x^3+x^2-4$ $=\text{Dividend}$ Hence, the quotient is $-4x^2-3x-3$ and the remainder is $-7$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.