Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A30: 66

Answer

Quotient $=5x^2-11$ Remainder $=x+20$

Work Step by Step

The given expression is $(5x^4-x^2+x-2)\div(x^2+2)$ Rewrite the expression as $(5x^4+0x^3-x^2+x-2)\div(x^2+0x+2)$ Perform long division: $\begin{matrix} & 5x^2 & -11 & ​& & & \leftarrow &\text{Quotient}\\ &-- &-- &--&--& \\ x^2+0x+2) &5x^4&+0x^3&-x^2&+x&-2 & \\ ​& 5x^4 &+0x^3 &+10x^2 & && \leftarrow &5x^2(x^2+0x+2) \\ & -- & -- & --& && \leftarrow &\text{subtract} \\ & 0 & 0& -11x^2 &+x &-2 \\ & & & -11x^2 &0x &-22& \leftarrow & -11(x^2+0x+2) \\ & & & -- & -- & -- & \leftarrow & \text{subtract} \\ & & & 0&x &+20& \leftarrow & \text{Remainder} ​\end{matrix}$ Checking: (Quotient)(divisor)+ Remainder $=(5x^2-11)(x^2+2)+x+20$ $=5x^4-11x^2+10x^2-22+x+20$ $=5x^4-x^2+x-2$ $=$ Dividend Hence, the quotient is $5x^2-11$ and the remainder is $x+20$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.