Answer
$\dfrac{7\pi}{6}$
Work Step by Step
Area $=R^2\pi- r^2 \pi=\pi (2^2-(1+\sqrt y)^2)=\pi (3-2\sqrt y-y)$
We integrate the integral to calculate the volume as follows:
$V= \pi \times \int_{0}^{1} (3-2\sqrt y-y) dy$
Now, $V= \pi [3y-\dfrac{4 y^{3/2}}{3}-\dfrac{y^2}{2}]_{0}^{1}$
or, $= \pi (\dfrac{18-8-3}{3})$
or, $=\dfrac{7\pi}{6}$