Answer
$2 \pi$
Work Step by Step
Area $=\pi r^2=\pi (\sqrt {2 \sin 2y})^2=2 \pi \sin 2y$
We integrate the integral to calculate the volume as follows:
$V= 2 \pi \int_{0}^{\pi/2} \sin 2y dy$
Now, $V= 2 \pi [(-1/2) \cos (2y)]_{0}^{\pi/2}$
or, $=- \pi [\cos \pi -\cos (0)]$
$V=2 \pi$