Answer
$4 \pi$
Work Step by Step
Area $=\pi r^2=\pi (y^{3/2} )^2= \pi y^3$
We integrate the integral to calculate the volume as follows:
$V= \pi \int_{0}^{2} y^3 dy$
Now, $V=\pi [\dfrac{y^4}{4}]_{0}^{2}$
or, $= \pi [\dfrac{16}{4}]$
$V=4 \pi$