Answer
$\dfrac{ \pi}{2}$
Work Step by Step
Area $=\pi r^2=\pi (\dfrac{\sqrt {2y}}{y^2+1})^2=\dfrac{2 \pi y}{(y^2+1)^2}$
We integrate the integral to calculate the volume as follows:
$V= \times \int_{0}^{1} \dfrac{2 \pi y}{(y^2+1)^2} dy$
Suppose $u =t^2+1 \implies dt=2y dy$
Now, $V= \pi \in_{1}^2 \dfrac{dt}{t^2}$
or, $= \pi (-\dfrac{1}{t})_{1}^{2}=\dfrac{ \pi}{2}$