Answer
$2 \pi$
Work Step by Step
Area $=\pi r^2=\pi (\sec x)^2=\pi \sec^2 (x)$
We integrate the integral to calculate the volume as follows:
$V= \int_{-\pi/4}^{\pi/4} \pi \sec^2 (x) dx$
Now, $V=(\pi) [\tan x]_{-\pi/4}^{\pi/4}$
or, $=(\pi) [\tan (\dfrac{\pi}{4}) -\tan (\dfrac{- \pi}{4})]$
or, $=2 \pi$