Answer
$4$
Work Step by Step
Area $=\pi r^2=\pi (\sqrt {\cos (\pi y/4)})^2=\pi \cos (\pi y /4)$
We integrate the integral to calculate the volume as follows:
$V= \pi \int_{-2}^{0} \cos (\pi y /4) dy$
Now, $V= \pi [(4/pi) \sin (\pi y/4)]_{-2}^{0}$
or, $=4 [\sin (0) -\sin (\dfrac{-\pi}{2})]$
$V=4$