Answer
$\pi(\dfrac{\pi}{2}-1)$
Work Step by Step
Area $=\pi r^2=\pi (1-\tan^2 y)$
We integrate the integral to calculate the volume as follows:
$V= \pi \times \int_{0}^{\pi/4} (1-tan^2 y) dy$
Now, $V= \pi (y-(\tan y -y))]_{0}^{\pi/4}$
or, $= \pi [2y-\tan y]_{0}^{\pi/4}$
or, $=\pi(\dfrac{\pi}{2}-1)$