Answer
$(4-\pi) $
Work Step by Step
We integrate the integral to calculate the volume as follows:
$V= (\pi/) \times \int_{0}^{1} r^2 dy$
Now, $V=(\pi) \int_{0}^{1} \tan^2 (\dfrac{\pi y}{4}) dy$
or, $=(\pi) \int_{0}^{1} [-1+\sec^2 (\dfrac{\pi y}{4})] dy$
or, $= \pi[-y+(4/ \pi) \tan (\dfrac{\pi}{4} )-(-0+0)]$
or, $=(4-\pi) $