Answer
$\dfrac{\pi}{30}$
Work Step by Step
Area $=\pi r^2=\pi (x-x^2)^2=\pi (x^2-2x^3+x^4)$
We integrate the integral to calculate the volume as follows:
$V= \int_{0}^{1} \pi (x^2-2x^3+x^4) dx$
Now, $V=[\dfrac{x^3}{3}-\dfrac{2x^4}{4}+\dfrac{x^5}{5}]_0^1 $
or, $=(\pi)(\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{5})$
or, $=\dfrac{\pi}{30}$