Answer
$\pi(\pi-2)$
Work Step by Step
Area $=R^2\pi- r^2 \pi=\pi ((\sqrt 2)^2-\sec^2 x)$
We integrate the integral to calculate the volume as follows:
$V= \pi \times \int_{-\pi/4}^{\pi/4} (2-\sec^2 x) dx$
Now, $V= \pi [2x-\tan x]_{-\pi/4}^{\pi/4}$
or, $= \pi (\dfrac{\pi}{2}-1+\dfrac{\pi}{2}+(-1))$
or, $=\pi(\pi-2)$