Answer
$\pi(\pi-2)$
Work Step by Step
Area $=\pi r^2=\pi (1-\cos x)$
We integrate the integral to calculate the volume as follows:
$V= \pi \times \int_{- \pi/2}^{\pi/2} (1-\cos x) dx$
Now, $V= \pi (x-\sin x)_{- \pi/2}^{\pi/2}$
or, $= \pi [\dfrac{\pi}{2}-\sin \dfrac{\pi}{2}-(-\dfrac{\pi}{2}) +\sin (-\dfrac{\pi}{2})])$
or, $=\pi(\pi-2)$