Answer
$36 \pi$
Work Step by Step
Area $=\pi r^2=\pi (\sqrt{9-x^2})^2$
We integrate the integral to calculate the volume as follows:
$V= (2) \times \int_{0}^{3} \pi (9-x^2) dx$
Now, $V=( 2\pi)\times [9x-\dfrac{x^3}{3}]_0^3$
or, $=(2 \pi)(27-9)$
or, $=36 \pi$