Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 36

Answer

$$\operatorname{curl}(f \mathbf{F})=f \operatorname{curl}(\mathbf{F})+(\nabla f) \times \mathbf{F}$$

Work Step by Step

We verify as follows: \begin{align*} \operatorname{curl}(f \mathbf{F})&= \begin{array}{|||} i&j &k\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ fF_1& fF_2&fF_3 \end{array} \\ &= \left( \frac{\partial( fF_3)}{\partial y}- \frac{\partial( fF_2)}{\partial z}\right)i - \left( \frac{\partial(fF_3 )}{\partial x}- \frac{\partial(fF_1)}{\partial z}\right)j + \left( \frac{\partial( fF_2 )}{\partial x}- \frac{\partial(fF_1 )}{\partial y}\right) k \\ &= \left( f\frac{\partial( F_3)}{\partial y}+F_3\frac{\partial( f)}{\partial y}- f\frac{\partial( F_2)}{\partial z}-F_2\frac{\partial( f)}{\partial z}\right)i - \left( f\frac{\partial(F_3 )}{\partial x}+F_3\frac{\partial(f )}{\partial x}- F_1\frac{\partial(f)}{\partial z}-f \frac{\partial(F_1)}{\partial z}\right)j + \left( f\frac{\partial( F_2 )}{\partial x}+F_2 \frac{\partial( f )}{\partial x}- f\frac{\partial(f)}{\partial y}- F_1\frac{\partial(f )}{\partial y}\right) k \\ &=\left[ \left( f\frac{\partial( F_3)}{\partial y} - f\frac{\partial( F_2)}{\partial z}- \right)i - \left( f\frac{\partial(F_3 )}{\partial x} -f \frac{\partial(F_1)}{\partial z}\right)j + \left( f\frac{\partial( F_2 )}{\partial x} - f\frac{\partial(f)}{\partial y}- \right) k \right] + \left[ \left( F_3\frac{\partial( f)}{\partial y} -F_2\frac{\partial( f)}{\partial z}\right)i - \left( F_3\frac{\partial(f )}{\partial x}- F_1\frac{\partial(f)}{\partial z} \right)j + \left( F_2 \frac{\partial( f )}{\partial x} - F_1\frac{\partial(f )}{\partial y}\right) k \right]\\ &=f\left[ \left( \frac{\partial( F_3)}{\partial y} - \frac{\partial( F_2)}{\partial z}- \right)i - \left( \frac{\partial(F_3 )}{\partial x} - \frac{\partial(F_1)}{\partial z}\right)j + \left( \frac{\partial( F_2 )}{\partial x} - \frac{\partial(f)}{\partial y}- \right) k \right] + \left[ \left( F_3\frac{\partial( f)}{\partial y} -F_2\frac{\partial( f)}{\partial z}\right)i - \left( F_3\frac{\partial(f )}{\partial x}- F_1\frac{\partial(f)}{\partial z} \right)j + \left( F_2 \frac{\partial( f )}{\partial x} - F_1\frac{\partial(f )}{\partial y}\right) k \right]\\ &=f \operatorname{curl}(\mathbf{F})+(\nabla f) \times \mathbf{F} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.