Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 21

Answer

The maximum velocity occurs at ${\bf{F}} = \left( {0,20} \right)$ with maximum speed $20$ m/s.

Work Step by Step

We have the velocity vector field: ${\bf{F}} = \left( {\frac{{ - x}}{{20}},20 - \frac{{{x^2}}}{{1000}}} \right)$. So, the speed is $v = ||{\bf{F}}|| = \sqrt {\left( {\frac{{ - x}}{{20}},20 - \frac{{{x^2}}}{{1000}}} \right)\cdot\left( {\frac{{ - x}}{{20}},20 - \frac{{{x^2}}}{{1000}}} \right)} $ $ = \sqrt {\frac{{{x^2}}}{{400}} + {{\left( {20 - \frac{{{x^2}}}{{1000}}} \right)}^2}} = \sqrt {\frac{{{x^2}}}{{400}} + 400 - \frac{{{x^2}}}{{25}} + \frac{{{x^4}}}{{{{10}^6}}}} $ $v = \sqrt {\frac{{{x^4}}}{{{{10}^6}}} - \frac{{3{x^2}}}{{80}} + 400} $ To find the maximum speed, we solve for the critical points of $v$: $\frac{{dv}}{{dx}} = \frac{1}{2}{\left( {\frac{{{x^4}}}{{{{10}^6}}} - \frac{{3{x^2}}}{{80}} + 400} \right)^{ - 1/2}}\left( {\frac{{4{x^3}}}{{{{10}^6}}} - \frac{{3x}}{{40}}} \right) = 0$ So, $\frac{{4{x^3}}}{{{{10}^6}}} - \frac{{3x}}{{40}} = 0$ $x\left( {\frac{{4{x^2}}}{{{{10}^6}}} - \frac{3}{{40}}} \right) = 0$ $x=0$, ${\ \ \ \ \ }$ $\frac{{4{x^2}}}{{{{10}^6}}} - \frac{3}{{40}} = 0$ The last equation gives $x = \pm 25\sqrt {30} $. So, the critical points occur at $x=0$, $x = \pm 25\sqrt {30} $. We plot the speed $v = \sqrt {\frac{{{x^4}}}{{{{10}^6}}} - \frac{{3{x^2}}}{{80}} + 400} $ versus $x$-coordinate and see the maximum occurs at $x=0$ (please see the figure attached). Notice that the $x$-values: $x = \pm 25\sqrt {30} $ is not part of the region, which is $ - 100 \le x \le 100$. Substituting $x=0$ in $v$ and ${\bf{F}}$ give ${v_{\max }} = 20$ and ${\bf{F}} = \left( {0,20} \right)$, respectively. So, the maximum velocity occurs at ${\bf{F}} = \left( {0,20} \right)$ with maximum speed $20$ m/s.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.