Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 33

Answer

We prove: $div{\ }curl\left( {\bf{F}} \right) = 0$

Work Step by Step

Write the vector field: ${\bf{F}} = \left( {{F_1},{F_2},{F_3}} \right)$. We assume that the partial derivatives exist and are continuous. Evaluate the curl of ${\bf{F}}$: $curl\left( {\bf{F}} \right) = \left( {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{F_1}}&{{F_2}}&{{F_3}} \end{array}} \right)$ $curl\left( {\bf{F}} \right) = \left( {\frac{{\partial {F_3}}}{{\partial y}} - \frac{{\partial {F_2}}}{{\partial z}}} \right){\bf{i}} - \left( {\frac{{\partial {F_3}}}{{\partial x}} - \frac{{\partial {F_1}}}{{\partial z}}} \right){\bf{j}} + \left( {\frac{{\partial {F_2}}}{{\partial x}} - \frac{{\partial {F_1}}}{{\partial y}}} \right){\bf{k}}$ Evaluate the divergence of $curl\left( {\bf{F}} \right)$: $divcurl\left( {\bf{F}} \right) = \left( {\frac{\partial }{{\partial x}},\frac{\partial }{{\partial y}},\frac{\partial }{{\partial z}}} \right)\cdot\left( {\frac{{\partial {F_3}}}{{\partial y}} - \frac{{\partial {F_2}}}{{\partial z}}, - \frac{{\partial {F_3}}}{{\partial x}} + \frac{{\partial {F_1}}}{{\partial z}},\frac{{\partial {F_2}}}{{\partial x}} - \frac{{\partial {F_1}}}{{\partial y}}} \right)$ $ = \frac{\partial }{{\partial x}}\left( {\frac{{\partial {F_3}}}{{\partial y}} - \frac{{\partial {F_2}}}{{\partial z}}} \right) + \frac{\partial }{{\partial y}}\left( { - \frac{{\partial {F_3}}}{{\partial x}} + \frac{{\partial {F_1}}}{{\partial z}}} \right) + \frac{\partial }{{\partial z}}\left( {\frac{{\partial {F_2}}}{{\partial x}} - \frac{{\partial {F_1}}}{{\partial y}}} \right)$ $ = \frac{{{\partial ^2}{F_3}}}{{\partial x\partial y}} - \frac{{{\partial ^2}{F_2}}}{{\partial x\partial z}} - \frac{{{\partial ^2}{F_3}}}{{\partial y\partial x}} + \frac{{\partial {F_1}}}{{\partial y\partial z}} + \frac{{{\partial ^2}{F_2}}}{{\partial z\partial x}} - \frac{{{\partial ^2}{F_1}}}{{\partial z\partial y}}$ $ = \frac{{{\partial ^2}{F_3}}}{{\partial x\partial y}} - \frac{{{\partial ^2}{F_3}}}{{\partial y\partial x}} - \frac{{{\partial ^2}{F_2}}}{{\partial x\partial z}} + \frac{{{\partial ^2}{F_2}}}{{\partial z\partial x}} + \frac{{\partial {F_1}}}{{\partial y\partial z}} - \frac{{{\partial ^2}{F_1}}}{{\partial z\partial y}}$ Since $\frac{{{\partial ^2}{F_3}}}{{\partial x\partial y}} = \frac{{{\partial ^2}{F_3}}}{{\partial y\partial x}}{\rm{,}}\frac{{{\partial ^2}{F_2}}}{{\partial x\partial z}} = \frac{{{\partial ^2}{F_2}}}{{\partial z\partial x}}{\rm{,}}\frac{{\partial {F_1}}}{{\partial y\partial z}} = \frac{{{\partial ^2}{F_1}}}{{\partial z\partial y}}$, so $div{\ }curl\left( {\bf{F}} \right) = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.