Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 32

Answer

$$\text{curl} \mathbf{(F+G)} = \operatorname{curl}(\mathbf{F})+\operatorname{curl}(\mathbf{G})$$

Work Step by Step

We expand and simplify: \begin{align*} \text{curl} \mathbf{(F+G)}&=\begin{array}{|||} i&j &k\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ \mathbf{F_1+G_1}& \mathbf{F_2+G_2}& \mathbf{F_3+G_3} \end{array} \\ &= \left( \frac{\partial( \mathbf{F_3+G_3})}{\partial y}- \frac{\partial( \mathbf{F_2+G_2})}{\partial z}\right)i - \left( \frac{\partial( \mathbf{F_3+G_3})}{\partial x}- \frac{\partial(\mathbf{F_1+G_1})}{\partial z}\right)j + \left( \frac{\partial( \mathbf{F_2+G_2} )}{\partial x}- \frac{\partial( \mathbf{F_1+G_1} )}{\partial y}\right) k\\ &=\left[ \left( \frac{\partial( \mathbf{F_3})}{\partial y}- \frac{\partial( \mathbf{F_2})}{\partial z}\right)i - \left( \frac{\partial( \mathbf{F_3})}{\partial x}- \frac{\partial(\mathbf{F_1})}{\partial z}\right)j + \left( \frac{\partial( \mathbf{F_2} )}{\partial x}- \frac{\partial( \mathbf{F_1} )}{\partial y}\right) k\right]+ \left[ \left( \frac{\partial( \mathbf{G_3})}{\partial y}- \frac{\partial( \mathbf{G_2})}{\partial z}\right)i - \left( \frac{\partial( \mathbf{G_3})}{\partial x}- \frac{\partial(\mathbf{G_1})}{\partial z}\right)j + \left( \frac{\partial( \mathbf{G_2} )}{\partial x}- \frac{\partial( \mathbf{G_1} )}{\partial y}\right) k\right]\\ &= \operatorname{curl}(\mathbf{F})+\operatorname{curl}(\mathbf{G}) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.