Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 34

Answer

$$\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl}(\mathbf{F})-\mathbf{F} \cdot \operatorname{curl}(\mathbf{G})$$

Work Step by Step

We verify as follows: \begin{align*} \operatorname{div}(\mathbf{F} \times \mathbf{G})&= \begin{array}{|||} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ \mathbf{F}_1& \mathbf{F}_2&\mathbf{F}_3\\ \mathbf{G}_1& \mathbf{G}_2&\mathbf{G}_3 \end{array} \\ &=\frac{\partial}{\partial x}\left( \mathbf{F}_{2} \mathbf{G}_{3}- \mathbf{F}_{3} \mathbf{G}_{2}\right)+\frac{\partial}{\partial y}\left( \mathbf{F}_{3}\mathbf{G}_{1}- \mathbf{F}_{1} \mathbf{G}_{3}\right)+\frac{\partial}{\partial z}\left( \mathbf{F}_{1} \mathbf{G}_{2}- \mathbf{F}_{2} \mathbf{G}_{1}\right)\\ &= \mathbf{F}_{1}\left(\frac{\partial \mathbf{G}_{2}}{\partial z}-\frac{\partial \mathbf{G}_{3}}{\partial y}\right)+\mathbf{F}_{2}\left(\frac{\partial \mathbf{G}_{3}}{\partial x}-\frac{\partial \mathbf{G}_{1}}{\partial z}\right) +\mathbf{F}_{3}\left(\frac{\partial \mathbf{G}_{1}}{\partial y}-\frac{\partial \mathbf{G}_{2}}{\partial z}\right)+ \mathbf{G}_{1}\left(\frac{\partial \mathbf{F}_{3}}{\partial y}-\frac{\partial \mathbf{F}_{2}}{\partial z}\right) + \mathbf{G}_{2}\left(\frac{\partial \mathbf{F}_{1}}{\partial z}-\frac{\partial \mathbf{F}_{3}}{\partial x}\right)+ \mathbf{G}_{3}\left(\frac{\partial \mathbf{F}_{2}}{\partial x}-\frac{\partial \mathbf{F}_{1}}{\partial y}\right) \\ &= \mathbf{G} \cdot \operatorname{curl}(\mathbf{F})-\mathbf{F} \cdot \operatorname{curl}(\mathbf{G}) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.