Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 31

Answer

$$\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div}(\mathbf{F})+\operatorname{div}(\mathbf{G})$$

Work Step by Step

We expand and simplify: \begin{align*} \operatorname{div}(\mathbf{F}+\mathbf{G})&= \frac{\partial( \mathbf{F}_x+\mathbf{G}_x)}{\partial x}+\frac{\partial( \mathbf{F}_y+\mathbf{G}_y) }{\partial y}+\frac{\partial ( \mathbf{F}_z+\mathbf{G}_z)}{\partial z}\\ &= \frac{\partial( \mathbf{F}_x )}{\partial x}+ \frac{\partial( \mathbf{G}_x)}{\partial x}+\frac{\partial( \mathbf{F}_y ) }{\partial y}+\frac{\partial( \mathbf{G}_y) }{\partial y}+\frac{\partial ( \mathbf{F}_z )}{\partial z}+\frac{\partial ( \mathbf{G}_z)}{\partial z}\\ &=\left( \frac{\partial( \mathbf{F}_x )}{\partial x}+\frac{\partial( \mathbf{F}_y ) }{\partial y}+\frac{\partial ( \mathbf{F}_z )}{\partial z}\right)+\left( \frac{\partial( \mathbf{G}_x)}{\partial x}+\frac{\partial( \mathbf{G}_y) }{\partial y}+\frac{\partial ( \mathbf{G}_z)}{\partial z} \right) \\ &=\operatorname{div}(\mathbf{F})+\operatorname{div}(\mathbf{G}) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.