Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 24

Answer

\begin{align*} \mathbf{div(F)}& =3\\ \text{curl} \mathbf{(F)}&=0 \end{align*}

Work Step by Step

Given $$x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$$ Since \begin{align*} \mathbf{div(F)}&=\frac{\partial \mathbf{F}_x}{\partial x}+\frac{\partial \mathbf{F}_y }{\partial y}+\frac{\partial \mathbf{F}_z}{\partial z}\\ &=\frac{\partial (x)}{\partial x}+\frac{\partial (y) }{\partial y}+\frac{\partial (z)}{\partial z}\\ &=1+1+1=3 \end{align*} and \begin{align*} \text{curl} \mathbf{(F)}&=\begin{array}{|||} i&j &k\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ x& y& z \end{array} \\ &= \left( \frac{\partial( z )}{\partial y}- \frac{\partial(y)}{\partial z}\right)i - \left( \frac{\partial( z )}{\partial x}- \frac{\partial(x )}{\partial z}\right)j + \left( \frac{\partial(y )}{\partial x}- \frac{\partial(x )}{\partial y}\right) k\\ &=0 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.