Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 26

Answer

div $\textbf{F}=\cos(x+z)-e^{xz}$ curl $\textbf{F}=yxe^{xz}\textbf{i}+\cos(z+x)\textbf{j}-yze^{xz}\textbf{k}$

Work Step by Step

div $\textbf{F}=\nabla\cdot \textbf{F}=\nabla\cdot\langle \sin (x+z),-ye^{xz},0\rangle$ $=\frac{\partial}{\partial x}(\sin (x+z))+\frac{\partial}{\partial y}(-ye^{xz})+\frac{\partial}{\partial z}(0)$ $=\cos (x+z)+(-e^{xz})+0$ $=\cos(x+z)-e^{xz}$ curl $\textbf{F}=\nabla\times\textbf{F}=\nabla\times\langle \sin(x+z),-ye^{xz},0\rangle$ $=(\frac{\partial (0)}{\partial y}-\frac{\partial (-ye^{xz})}{\partial z})\textbf{i}+(\frac{\partial(\sin(x+z))}{\partial z}-\frac{\partial(0)}{\partial x})\textbf{j}+(\frac{\partial(-ye^{xz})}{\partial x}-\frac{\partial(\sin(x+z))}{\partial y})\textbf{k}$ $=(0-(-yxe^{xz}))\textbf{i}+(\cos(z+x)-0)\textbf{j}+(-yze^{xz}-0)\textbf{k}$ $=yxe^{xz}\textbf{i}+\cos(z+x)\textbf{j}-yze^{xz}\textbf{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.