Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 23

Answer

$div\left( {\bf{F}} \right) = y + z$ $curl\left( {\bf{F}} \right) = y{\bf{i}} + 3{x^2}{\bf{j}} - x{\bf{k}}$

Work Step by Step

We have ${\bf{F}} = \left( {xy,yz,{y^2} - {x^3}} \right)$. Let ${F_1} = xy$, ${F_2} = yz$, ${F_3} = {y^2} - {x^3}$. $div\left( {\bf{F}} \right) = \frac{{\partial {F_1}}}{{\partial x}} + \frac{{\partial {F_2}}}{{\partial y}} + \frac{{\partial {F_3}}}{{\partial z}} = y + z + 0$ So, $div\left( {\bf{F}} \right) = y + z$. $curl\left( {\bf{F}} \right) = \left( {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{F_1}}&{{F_2}}&{{F_3}} \end{array}} \right)$ $ = \left( {\frac{{\partial {F_3}}}{{\partial y}} - \frac{{\partial {F_2}}}{{\partial z}}} \right){\bf{i}} - \left( {\frac{{\partial {F_3}}}{{\partial x}} - \frac{{\partial {F_1}}}{{\partial z}}} \right){\bf{j}} + \left( {\frac{{\partial {F_2}}}{{\partial x}} - \frac{{\partial {F_1}}}{{\partial y}}} \right){\bf{k}}$ $ = \left( {2y - y} \right){\bf{i}} - \left( { - 3{x^2} - 0} \right){\bf{j}} + \left( {0 - x} \right){\bf{k}}$ So, $curl\left( {\bf{F}} \right) = y{\bf{i}} + 3{x^2}{\bf{j}} - x{\bf{k}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.