Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 35

Answer

$$\operatorname{div}(f \mathbf{F})=f \operatorname{div}(\mathbf{F})+\mathbf{F} \cdot \nabla f$$

Work Step by Step

We verify as follows: \begin{align*} \operatorname{div}(f \mathbf{F})&=\nabla \cdot(f \mathbf{F})\\ &=\frac{\partial}{\partial x}\left(f F_{1}\right)+\frac{\partial}{\partial y}\left(f F_{2}\right)+\frac{\partial}{\partial z}\left(f F_{3}\right)\\ &=\frac{\partial f}{\partial x} F_{1}+f \frac{\partial F_{1}}{\partial x}+\frac{\partial f}{\partial y} F_{2}+f \frac{\partial F_{2}}{\partial y}+\frac{\partial f}{\partial z} F_{3}+f \frac{\partial F_{3}}{\partial z}\\ &=\frac{\partial f}{\partial x} F_{1}+\frac{\partial f}{\partial y} F_{2}+\frac{\partial f}{\partial z} F_{3}+f\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{2}}{\partial z}\right)\\ &=(\nabla f) \cdot \mathbf{F}+f(\nabla \cdot \mathbf{F}) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.