Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.1 Vector Fields - Exercises - Page 919: 20

Answer

The planar vector fields satisfies by the $\bf{Plot (D)}$.

Work Step by Step

When we draw a vector field , we need to draw $F(P)$ as a vector based at a point (let us say a point) $P$. The domain of $F$ corresponds to the set of points $P$ for which $F(P)$ is defined. This follows that $F(x,y,z)=\lt e^r \gt \quad$ We see that the vector field is not defined at origin, so the vector field is not defined at the origin $\lt0,0,0 \gt$. So, we interpret from the above discussion that the planar vector fields satisfies by the $\bf{Plot (D)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.