Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 48

Answer

The normal vector ${\bf{N}}\left( t \right)$ at $t = \pi $ is ${\bf{N}}\left( \pi \right) = \left( {0, - 1} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t - \sin t,1 - \cos t} \right)$. The derivatives are ${\bf{r}}'\left( t \right) = \left( {1 - \cos t,\sin t} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = \left( {\sin t,\cos t} \right)$. Let ${\rm{v}}\left( t \right) = ||{\bf{r}}'\left( t \right)||$. So, ${\rm{v}}\left( t \right) = \sqrt {{{\left( {1 - \cos t} \right)}^2} + {{\sin }^2}t} = \sqrt {2 - 2\cos t} $ $v'\left( t \right) = \frac{1}{{2\sqrt {2 - 2\cos t} }}2\sin t = \frac{{\sin t}}{{\sqrt {2 - 2\cos t} }}$ Evaluate $v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)$ at $t = \pi $: $v\left( \pi \right){\bf{r}}{\rm{''}}\left( \pi \right) - v'\left( \pi \right){\bf{r}}'\left( \pi \right) = 2\left( {0, - 1} \right) - 0\left( {2,0} \right)$ $v\left( \pi \right){\bf{r}}{\rm{''}}\left( \pi \right) - v'\left( \pi \right){\bf{r}}'\left( \pi \right) = \left( {0, - 2} \right)$ By Eq. (12), the normal vector ${\bf{N}}\left( t \right)$ at $t = \pi $ is given by ${\bf{N}}\left( \pi \right) = \frac{{v\left( \pi \right){\bf{r}}{\rm{''}}\left( \pi \right) - v'\left( \pi \right){\bf{r}}'\left( \pi \right)}}{{||v\left( \pi \right){\bf{r}}{\rm{''}}\left( \pi \right) - v'\left( \pi \right){\bf{r}}'\left( \pi \right)||}}$ ${\bf{N}}\left( \pi \right) = \frac{{\left( {0, - 2} \right)}}{{||\left( {0, - 2} \right)||}} = \frac{1}{2}\left( {0, - 2} \right) = \left( {0, - 1} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.