Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 38

Answer

Please see the figure attached. For $t=1$, we choose the (+) sign to get ${\bf{N}}{\left( 1 \right)_ + } = \left( { - \frac{3}{{\sqrt {10} }},\frac{1}{{\sqrt {10} }}} \right)$. For $t=-1$, we choose the (-) sign to get ${\bf{N}}{\left( { - 1} \right)_ - } = \left( {\frac{3}{{\sqrt {10} }}, - \frac{1}{{\sqrt {10} }}} \right)$.

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t,{t^3}} \right)$ and ${\bf{r}}'\left( t \right) = \left( {1,3{t^2}} \right)$. We find the unit tangent vector ${\bf{T}}\left( t \right)$: ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {1,3{t^2}} \right)}}{{\sqrt {\left( {1,3{t^2}} \right)\cdot\left( {1,3{t^2}} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( {1,3{t^2}} \right)}}{{\sqrt {1 + 9{t^4}} }} = \left( {\frac{1}{{\sqrt {1 + 9{t^4}} }},\frac{{3{t^2}}}{{\sqrt {1 + 9{t^4}} }}} \right)$ Taking the derivative, we obtain ${\bf{T}}'\left( t \right) = \left( { - \frac{{18{t^3}}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}},\frac{{6t}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}}} \right)$ By Eq. (6), the normal vector ${\bf{N}}\left( t \right)$ is given by ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ ${\bf{N}}\left( t \right) = \frac{{\left( { - \frac{{18{t^3}}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}},\frac{{6t}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}}} \right)}}{{\sqrt {\left( { - \frac{{18{t^3}}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}},\frac{{6t}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}}} \right)\cdot\left( { - \frac{{18{t^3}}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}},\frac{{6t}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}}} \right)} }}$ ${\bf{N}}\left( t \right) = \frac{{\left( { - \frac{{18{t^3}}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}},\frac{{6t}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}}} \right)}}{{\sqrt {\frac{{{{18}^2}{t^6}}}{{{{\left( {1 + 9{t^4}} \right)}^3}}} + \frac{{{6^2}{t^2}}}{{{{\left( {1 + 9{t^4}} \right)}^3}}}} }}$ ${\bf{N}}\left( t \right) = \frac{{\left( { - \frac{{18{t^3}}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}},\frac{{6t}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}}} \right)}}{{\sqrt {\frac{{{6^2}{t^2}\left( {1 + 9{t^4}} \right)}}{{{{\left( {1 + 9{t^4}} \right)}^3}}}} }}$ ${\bf{N}}\left( t \right) = \pm \left( {\frac{{1 + 9{t^4}}}{{6t}}} \right)\left( { - \frac{{18{t^3}}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}},\frac{{6t}}{{{{\left( {1 + 9{t^4}} \right)}^{3/2}}}}} \right)$ ${\bf{N}}\left( t \right) = \pm \left( { - \frac{{3{t^2}}}{{\sqrt {1 + 9{t^4}} }},\frac{1}{{\sqrt {1 + 9{t^4}} }}} \right)$ Notice that the unit normal ${\bf{N}}\left( t \right)$ points in one of the two directions $ \pm \left( { - \frac{{3{t^2}}}{{\sqrt {1 + 9{t^4}} }},\frac{1}{{\sqrt {1 + 9{t^4}} }}} \right)$. For $t=1$, we get ${\bf{N}}\left( 1 \right) = \pm \left( { - \frac{3}{{\sqrt {10} }},\frac{1}{{\sqrt {10} }}} \right)$. There are two normal vectors, that is, ${\bf{N}}{\left( 1 \right)_ + } = \left( { - \frac{3}{{\sqrt {10} }},\frac{1}{{\sqrt {10} }}} \right)$ ${\ \ }$ and ${\ \ }$ ${\bf{N}}{\left( 1 \right)_ - } = \left( {\frac{3}{{\sqrt {10} }}, - \frac{1}{{\sqrt {10} }}} \right)$ Since the normal vector always point to the inside of the curve, we choose the (+) sign to get ${\bf{N}}{\left( 1 \right)_ + } = \left( { - \frac{3}{{\sqrt {10} }},\frac{1}{{\sqrt {10} }}} \right)$ (see the figure). For $t=-1$, we get ${\bf{N}}\left( { - 1} \right) = \pm \left( { - \frac{3}{{\sqrt {10} }},\frac{1}{{\sqrt {10} }}} \right)$. There are two normal vectors, that is, ${\bf{N}}{\left( { - 1} \right)_ + } = \left( { - \frac{3}{{\sqrt {10} }},\frac{1}{{\sqrt {10} }}} \right)$ ${\ \ }$ and ${\ \ }$ ${\bf{N}}{\left( { - 1} \right)_ - } = \left( {\frac{3}{{\sqrt {10} }}, - \frac{1}{{\sqrt {10} }}} \right)$ Since the normal vector always point to the inside of the curve, we choose the (-) sign to get ${\bf{N}}{\left( { - 1} \right)_ - } = \left( {\frac{3}{{\sqrt {10} }}, - \frac{1}{{\sqrt {10} }}} \right)$ (see the figure).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.