Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 47

Answer

The normal vector ${\bf{N}}\left( t \right)$ at $t=1$ is ${\bf{N}}\left( 1 \right) = \left( { - \frac{3}{{\sqrt {13} }},\frac{2}{{\sqrt {13} }}} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {{t^2},{t^3}} \right)$. The derivatives are ${\bf{r}}'\left( t \right) = \left( {2t,3{t^2}} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = \left( {2,6t} \right)$. Let ${\rm{v}}\left( t \right) = ||{\bf{r}}'\left( t \right)||$. So, ${\rm{v}}\left( t \right) = \sqrt {4{t^2} + 9{t^4}} = t\sqrt {4 + 9{t^2}} $ $v'\left( t \right) = \frac{{8t + 36{t^3}}}{{2\sqrt {4{t^2} + 9{t^4}} }} = \frac{{4 + 18{t^2}}}{{\sqrt {4 + 9{t^2}} }}$ Evaluate $v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)$ at $t=1$: $v\left( 1 \right){\bf{r}}{\rm{''}}\left( 1 \right) - v'\left( 1 \right){\bf{r}}'\left( 1 \right) = \sqrt {13} \left( {2,6} \right) - \frac{{22}}{{\sqrt {13} }}\left( {2,3} \right)$ $v\left( 1 \right){\bf{r}}{\rm{''}}\left( 1 \right) - v'\left( 1 \right){\bf{r}}'\left( 1 \right) = \left( {2\sqrt {13} - \frac{{44}}{{\sqrt {13} }},6\sqrt {13} - \frac{{66}}{{\sqrt {13} }}} \right)$ By Eq. (12), the normal vector ${\bf{N}}\left( t \right)$ at $t=1$ is given by ${\bf{N}}\left( 1 \right) = \frac{{v\left( 1 \right){\bf{r}}{\rm{''}}\left( 1 \right) - v'\left( 1 \right){\bf{r}}'\left( 1 \right)}}{{||v\left( 1 \right){\bf{r}}{\rm{''}}\left( 1 \right) - v'\left( 1 \right){\bf{r}}'\left( 1 \right)||}}$ ${\bf{N}}\left( 1 \right) = \frac{{\left( {2\sqrt {13} - \frac{{44}}{{\sqrt {13} }},6\sqrt {13} - \frac{{66}}{{\sqrt {13} }}} \right)}}{{||\left( {2\sqrt {13} - \frac{{44}}{{\sqrt {13} }},6\sqrt {13} - \frac{{66}}{{\sqrt {13} }}} \right)||}}$ ${\bf{N}}\left( 1 \right) = \frac{{\left( {2\sqrt {13} - \frac{{44}}{{\sqrt {13} }},6\sqrt {13} - \frac{{66}}{{\sqrt {13} }}} \right)}}{{\sqrt {\left( {2\sqrt {13} - \frac{{44}}{{\sqrt {13} }},6\sqrt {13} - \frac{{66}}{{\sqrt {13} }}} \right)\cdot\left( {2\sqrt {13} - \frac{{44}}{{\sqrt {13} }},6\sqrt {13} - \frac{{66}}{{\sqrt {13} }}} \right)} }}$ ${\bf{N}}\left( 1 \right) = \left( { - \frac{3}{{\sqrt {13} }},\frac{2}{{\sqrt {13} }}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.