Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 28

Answer

Using Eq. (3) we prove that $\kappa \left( t \right) = \frac{{\left| {x'\left( t \right)y{\rm{''}}\left( t \right) - x{\rm{''}}\left( t \right)y'\left( t \right)} \right|}}{{{{\left( {x'{{\left( t \right)}^2} + y'{{\left( t \right)}^2}} \right)}^{3/2}}}}$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$. By Eq. (3) of Theorem 1, the curvature is given by $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ We treat ${\bf{r}}\left( t \right)$ as a curve in ${\mathbb{R}^3}$ by setting the $z$-component equal to zero. Thus, ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right),0} \right)$. The derivatives are ${\bf{r}}'\left( t \right) = \left( {x'\left( t \right),y'\left( t \right),0} \right)$ ${\bf{r}}{\rm{''}}\left( t \right) = \left( {x{\rm{''}}\left( t \right),y{\rm{''}}\left( t \right),0} \right)$ Omitting the parameter $t$ for convenience, we evaluate ${\bf{r}}' \times {\bf{r}}{\rm{''}} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {x'}&{y'}&0\\ {x{\rm{''}}}&{y{\rm{''}}}&0 \end{array}} \right|$ ${\bf{r}}' \times {\bf{r}}{\rm{''}} = \left( {x'y{\rm{''}} - x{\rm{''}}y'} \right){\bf{k}}$ So, $||{\bf{r}}' \times {\bf{r}}{\rm{''}}|| = \sqrt {\left( {x'y{\rm{''}} - x{\rm{''}}y'} \right)\cdot\left( {x'y{\rm{''}} - x{\rm{''}}y'} \right)} $ $||{\bf{r}}' \times {\bf{r}}{\rm{''}}|| = \left| {x'y{\rm{''}} - x{\rm{''}}y'} \right|$ Next, we evaluate $||{\bf{r}}'||$ $||{\bf{r}}'|| = \sqrt {\left( {x',y',0} \right)\cdot\left( {x',y',0} \right)} $ $||{\bf{r}}'|| = \sqrt {{{\left( {x'} \right)}^2} + {{\left( {y'} \right)}^2}} $ Substituting $||{\bf{r}}' \times {\bf{r}}{\rm{''}}||$ and $||{\bf{r}}'||$ in $\kappa$ gives $\kappa = \frac{{\left| {x'y{\rm{''}} - x{\rm{''}}y'} \right|}}{{{{\left( {{{\left( {x'} \right)}^2} + {{\left( {y'} \right)}^2}} \right)}^{3/2}}}}$ Hence, (11) ${\ \ \ }$ $\kappa \left( t \right) = \frac{{\left| {x'\left( t \right)y{\rm{''}}\left( t \right) - x{\rm{''}}\left( t \right)y'\left( t \right)} \right|}}{{{{\left( {x'{{\left( t \right)}^2} + y'{{\left( t \right)}^2}} \right)}^{3/2}}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.