Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 46

Answer

Using Eq. (6), we show that the normal vector is given by ${\bf{N}}\left( t \right) = \frac{{v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)}}{{||v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)||}}$

Work Step by Step

Let ${\bf{r}}\left( t \right)$ be the parametrization for the curve. The tangent vector is ${\bf{r}}'\left( t \right)$. So, the unit tangent vector is given by ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}}$. Since ${\rm{v}}\left( t \right) = ||{\bf{r}}'\left( t \right)||$, so, ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{v\left( t \right)}}$. The derivative of ${\bf{T}}\left( t \right)$ is ${\bf{T}}'\left( t \right) = \frac{{v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)}}{{v{{\left( t \right)}^2}}}$ We can write $v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right) = v{\left( t \right)^2}{\bf{T}}'\left( t \right)$ Since $v{\left( t \right)^2}$ is always positive, thus $v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)$ is a positive multiple of ${\bf{T}}'\left( t \right)$. By Eq. (6), the normal vector ${\bf{N}}\left( t \right)$ is given by ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ ${\bf{N}}\left( t \right) = \left( {\frac{{v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)}}{{v{{\left( t \right)}^2}}}} \right)\left( {\frac{{v{{\left( t \right)}^2}}}{{||v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)||}}} \right)$ Hence, ${\bf{N}}\left( t \right) = \frac{{v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)}}{{||v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)||}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.