Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 35

Answer

See the plot of the clothoid (figure attached) ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$, where $x\left( t \right) = \mathop \smallint \limits_0^t \sin \frac{{{u^3}}}{3}{\rm{d}}u$, ${\ \ \ }$ $y\left( t \right) = \mathop \smallint \limits_0^t \cos \frac{{{u^3}}}{3}{\rm{d}}u$ Its curvature is $\kappa \left( t \right) = {t^2}$.

Work Step by Step

Using a computer algebra system, we plotted the clothoid ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$, where $x\left( t \right) = \mathop \smallint \limits_0^t \sin \frac{{{u^3}}}{3}{\rm{d}}u$, ${\ \ \ }$ $y\left( t \right) = \mathop \smallint \limits_0^t \cos \frac{{{u^3}}}{3}{\rm{d}}u$ By the Fundamental Theorem of Calculus: $x'\left( t \right) = \sin \frac{{{t^3}}}{3}$, ${\ \ \ }$ $y'\left( t \right) = \cos \frac{{{t^3}}}{3}$ The second derivatives are $x{\rm{''}}\left( t \right) = {t^2}\cos \frac{{{t^3}}}{3}$, ${\ \ \ }$ $y{\rm{''}}\left( t \right) = - {t^2}\sin \frac{{{t^3}}}{3}$ Substituting these in Eq. (11) of Exercise 28: $\kappa \left( t \right) = \frac{{\left| {x'\left( t \right)y{\rm{''}}\left( t \right) - x{\rm{''}}\left( t \right)y'\left( t \right)} \right|}}{{{{\left( {x'{{\left( t \right)}^2} + y'{{\left( t \right)}^2}} \right)}^{3/2}}}}$ gives $\kappa \left( t \right) = \frac{{\left| { - {t^2}{{\sin }^2}\frac{{{t^3}}}{3} - {t^2}{{\cos }^2}\frac{{{t^3}}}{3}} \right|}}{{{{\left( {{{\sin }^2}\frac{{{t^3}}}{3} + {{\cos }^2}\frac{{{t^3}}}{3}} \right)}^{3/2}}}} = \frac{{\left| { - {t^2}\left( {{{\sin }^2}\frac{{{t^3}}}{3} + {{\cos }^2}\frac{{{t^3}}}{3}} \right)} \right|}}{{{{\left( {{{\sin }^2}\frac{{{t^3}}}{3} + {{\cos }^2}\frac{{{t^3}}}{3}} \right)}^{3/2}}}}$ Since ${\sin ^2}\frac{{{t^3}}}{3} + {\cos ^2}\frac{{{t^3}}}{3} = 1$, so $\kappa \left( t \right) = \left| { - {t^2}} \right| = {t^2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.